Algorithms for Similarity Relation Learning from High Dimensional Data

نویسنده

  • Andrzej Janusz
چکیده

The notion of similarity plays an important role in machine learning and artificial intelligence. It is widely used in tasks related to a supervised classification, clustering, an outlier detection and planning [7, 22, 57, 89, 153, 166]. Moreover, in domains such as information retrieval or case-based reasoning, the concept of similarity is essential as it is used at every phase of the reasoning cycle [1]. The similarity itself, however, is a very complex concept that slips out from formal definitions. A similarity of two objects can be different depending on a considered context. In many practical situations it is difficult even to evaluate the quality of similarity assessments without considering the task for which they were performed. Due to this fact the similarity should be learnt from data, specifically for the task at hand. In this dissertation a similarity model, called Rule-Based Similarity, is described and an algorithm for constructing this model from available data is proposed. The model utilizes notions from the rough set theory [108, 110, 113, 114, 115] to derive a similarity function that allows to approximate the similarity relation in a given context. The construction of the model starts from the extraction of sets of higher-level features. Those features can be interpreted as important aspects of the similarity. Having defined such features it is possible to utilize the idea of Tversky’s feature contrast model [159] in order to design an accurate and psychologically plausible similarity function for a given problem. Additionally, the dissertation shows two extensions of Rule-Based Similarity which are designed to efficiently deal with high dimensional data. They incorporate a broader array of similarity aspects into the model. In the first one it is done by constructing many heterogeneous sets of features from multiple decision reducts. To ensure their diversity, a randomized reduct computation heuristic is proposed. This approach is particularly well-suited for dealing with the few-objects-many-attributes problem, e.g. the analysis of DNA microarray data. A similar idea can be utilized in the text mining domain. The second of the proposed extensions serves this particular purpose. It uses a combination of a semantic indexing method and an information bireducts computation technique to represent texts by sets of meaningful concepts. The similarity function of the proposed model can be used to perform an accurate classification of previously unseen objects in a case-based fashion or to facilitate clustering of textual documents into semantically homogeneous groups. Experiments, whose results are also presented in the dissertation, show that the proposed models can successfully compete with the state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

Distance Preserving Dimension Reduction for Manifold Learning

Manifold learning is an effective methodology for extracting nonlinear structures from high-dimensional data with many applications in image analysis, computer vision, text data analysis and bioinformatics. The focus of this paper is on developing algorithms for reducing the computational complexity of manifold learning algorithms, in particular, we consider the case when the number of features...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trans. Rough Sets

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2014